Maths Calculation Policy

Through respect we will work together in Christ to develop the whole person

Written: September 2021

Date of Review: September 2023

Leader: Mr J Brooks

St Matthew's Policy for Maths Calculation

SMSC Statement

At St Matthew's Catholic Primary School, we recognise that the personal development of pupils, spiritually, morally, socially and culturally, plays a significant part in their ability to learn and achieve. We therefore aim to provide an education that provides pupils with opportunities to explore and develop their own values and beliefs, spiritual awareness, high standards of personal behaviour, a positive, caring attitude towards other people, an understanding of their social and cultural traditions and an appreciation of the diversity and richness of the cultures.

Overview

This policy focuses on the four operations of addition, subtraction, multiplication and division and includes a list of the key mental maths skills that support written methods.

For each operation, there are four stages, starting with the practical methods that support conceptual understanding moving through to methods that allow children to demonstrate efficiency in procedural approaches.

It is important to emphasise that alternative methods may be more appropriate for certain calculations and that informal methods currently used successfully in our school may continue to be used as they support the raised expectations in calculation outlined in this policy.

This calculation policy has been developed using the Liverpool Maths Team to support effective implementation of the 2014 Primary National Curriculum.

The aims of Maths in St Matthew's CPS are to help children:

- \cdot enjoy maths through practical activity, exploration and discussion
- · understand the importance of mathematics in everyday life
- \cdot become confidence and competent with numbers and the number system
- \cdot become fluent in the fundamentals of mathematics

 \cdot develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately

· to reason mathematically by following a line of enquiry,

 \cdot spot relationships across domains, make generalisations and express an opinion using mathematical language

 \cdot solve problems by applying their mathematics to a variety of routine and non-routine problems, including breaking down problems into a series of simpler steps

 \cdot keep persevering in seeking solutions and be aware that there are often many or even no solution

 \cdot develop an appreciation of the creative aspects of maths; awareness of its aesthetic appeal

 \cdot see the historic context and present-day relevance of mathematics

<u>Addition</u>

Written methods for addition

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of addition.

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence.

Children are taught and acquire secure mental methods of calculation and one written method of calculation for addition which they know they can rely on when mental methods are not appropriate.

This policy shows the possible stages of each written method for addition, each stage building towards a more refined method.

There are some key basic skills that children need to help with addition, which include:

- counting
- estimating

recalling all addition pairs to 10, 20 and 100 (7 + 3 = 10, 17 + 3 = 20, 70 + 30 = 100)

knowing number facts to 10 (6 + 2 = 8)

• adding mentally a series of one-digit numbers (5 + 8 + 4)

• adding multiples of 10 (60 + 70) or of 100 (600 + 700) using the related addition fact, 6 + 7, and their knowledge of place value

 partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways

(432 into 400 + 30 + 2 and also into 300 + 120 + 12)

• understanding and using addition and subtraction as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Stage 1: Practical (combining) and adding on (increasing)

Prior to recording addition steps on a number line, children will work practically with equipment where they are combining sets of objects. As they become more confident, this practical addition of sets of objects will be mirrored on a number line so that the two are being done together and children are adding on. This will prepare them for the abstract concept of adding numbers rather than objects.

Stage 2: Number tracks and number lines

Steps in addition can be recorded on a number line. The steps often bridge through a multiple of 10 and, this is more efficient if children know how to partition 1-digit numbers.

With practice, children will need to record fewer jumps

Stage 3: Partitioning (expanded columnar method)

Partition both numbers into tens and units or hundreds, tens and units (using a grid makes this easier).

4	48 + 36 = 84				148 + 36 = 184						This builds on children's mental maths skills of	
		40	8					100	40	8		partitioning and recombining 40 + 30 = 70
	+	30	6				+		30	6		8 + 6 = 14 48 + 36 = 84
		70	¹ 4	84				100	70	¹ 4	184	

Stage 4: Efficient (column method)

48 + 36 84 1	148 + 36 184 1	48.56 + 32.23 80.79	Children should be encouraged to estimate their answers first
-----------------------	-------------------------	---------------------------	--

Column addition remains efficient when used with larger whole numbers or decimals, and when adding more than two numbers, once learned, the method is quick and reliable.

Subtraction

Written methods for Subtraction

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of subtraction.

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence.

Children are taught and acquire secure mental methods of calculation and one written method of calculation for subtraction which they know they can rely on when mental methods are not appropriate.

This policy shows the possible stages of each written method for subtraction, each stage building towards a more refined method.

There are some key basic skills that children need to help with subtraction, which include:

counting

estimating

• recalling all addition pairs to 10, 20 and 100 along with their inverses (7 + 3 = 10, 10 - 3 = 7,

17 + 3 = 20, 20 - 3 = 17, 70 + 30 = 100, 100 - 30 = 70)

• knowing number facts to 10 and their inverses (6 + 2 = 8, 8 - 2 = 6)

subtracting multiples of 10 (160 - 70) using the related subtraction fact, 16 7, and their knowledge of place value

 $\boldsymbol{\cdot}$ partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways

(432 into 400 + 30 + 2 and also into 300 + 120 + 12)

· understanding and using subtraction and addition as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Stage 1: Practical (taking away)

Prior to recording subtraction steps on a number line, children will work practically with equipment where they are 'taking away' a small group from a larger set of objects. As they become more confident, this practical subtraction will be mirrored on a number line so that the two are being done together. This will prepare them for the abstract concept of subtracting numbers rather than objects.

Stage 2: Number tracks and number lines

Counting back (to be introduced before counting up)

Steps in subtraction can be recorded from right to left on a number line. The steps often bridge through a multiple of 10 and, this is more efficient if children know how to partition 1-digit numbers.

With practice, children will need to record fewer jumps.

Counting up (to be introduced after counting back)

Steps in subtraction can be recorded from left to right on a number line. The steps often bridge through a multiple of 10.

When carrying out money calculations that involve finding change or when calculating time duration, children should use this method.

Stage 3: Partitioning (expanded columnar method)

Partition both numbers into tens and units or hundreds, tens and units (using a grid makes this easier).

	⁶⁰ 70	4		15	100	⁶⁰ 70	¹ 4	
-	20	7				20	7	
	40	7	47		100	40	7	147

Stage 4: Efficient (column method)

⁶ 74	174	48.56	Children should
- 27	- 27	- 32.23	be encouraged to estimate their answers first
47	147	16.33	

Column subtraction remains efficient when used with larger whole numbers or decimals, once learned, the method is quick and reliable.

Multiplication

Written methods for Multiplication

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of multiplication.

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence.

Children are taught and acquire secure mental methods of calculation and one written method of calculation for multiplication which they know they can rely on when mental methods are not appropriate.

This policy shows the possible stages of each written method for multiplication, each stage building towards a more refined method.

There are some key basic skills that children need to help with multiplication, which include:

- counting
- estimating
- understanding multiplication as repeated addition
- recalling all multiplication facts to 12 × 12
- partitioning numbers into multiples of one hundred, ten and one

 \cdot working out products (70 × 5, 70 × 50, 700 × 5, 700 × 50) using the related fact 7 × 5 and their knowledge of place value

· adding two or more single-digit numbers mentally

 \cdot adding multiples of 10 (60 + 70) or of 100 (600 + 700) using the related addition fact, 6 + 7, and their knowledge of place value

- adding combinations of whole numbers
- understanding and using division and multiplication as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Stage 1: Practical (repeated addition)

Children will work practically with equipment grouping objects to see multiplication as repeated addition.

As they become more confident, this practical grouping of objects will be mirrored on a number line using the vocabulary 'lots of', 'groups of', 'how many lots', 'how many times' so that the two are being done together. This will prepare them for the abstract concept of multiplying numbers rather than objects.

This image can be expressed as:

- 2 multiplied by 5
- two, five times
- 5 groups of 2
- \cdot 5 lots of 2

• 5 jumps of 2 on a number line

Stage 2: Practical and pictorial arrays (towards grid method)

Children use arrays to demonstrate their understanding of commutativity for multiplication facts

Stage 3: Partitioning (grid method)

24 x 3 = 72				24 x	32 =	= 768	3		
x	20	4			×	20	4		
3	60	12	72	•	30	600	120	720	
	•				2	40	8	48	
								768	

Stage 4: Short (column)

24 x 3 = 72	1241 x 3 = 3723
24	1241
x 3	x 3
72	3723
1	1

Stage 5: Long (column)

24 x 32 = 768	1245 x 13	In the examples given, it is also correct to multiply
24 <u>x 32</u> 48	1245 <u>x 13</u> 3735	starting with the tens digit (ie multiplying by the most significant digit first)
<u>720</u> 765	<u>12450</u> 16185	

Division

Written methods for Division

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of division.

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence.

Children are taught and acquire secure mental methods of calculation and one written method of calculation for division which they know they can rely on when mental methods are not appropriate.

This policy shows the possible stages of each written method for division, each stage building towards a more refined method.

There are some key basic skills that children need to help with subtraction, which include:

- counting
- estimating
- understanding division as repeated subtraction

• partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways

(432 into 400 + 30 + 2 and also into 300 + 120 + 12)

 \cdot recalling multiplication and division facts to 12 \times 12

• recognising multiples of one-digit numbers and dividing multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value

• knowing how to find a remainder working mentally, for example, find the remainder when 48 is divided by 5

• understanding and using division and multiplication as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Stage 1: Practical (sharing)

Children will work practically with equipment sharing objects one to one.

12 cakes are shared equally between 3 people.

Stage 2: Number lines (grouping)

Children will move from sharing objects practically to grouping them, this will be mirrored on a number line, working from right to left so that they see division as repeated subtraction. This will prepare them for the abstract concept of dividing numbers rather than objects.

Each cake box holds 3 cakes, if I have 12 cakes, how many cake boxes will I need?

Using their knowledge of the inverse relationship between multiplication and division, children can use their multiplication tables when grouping on a number line, working from left to right.

First without and then with remainders and ensuring that divisors offer an appropriate level of challenge.

|--|

372 ÷ 3 = 124	432 ÷ 15 = 28 r12	28 ¹² / ₁₅	28 ⁴ / ₅	28.8
124	28 r12	15 432	15 432	15 432
3 372	15 432	remainder as a fraction		remainder as a decimal
01012	101402			

Stage 4: Long division

560 ÷ 24 = 23 r8	432 ÷ 15 = 28 r12	28.8	28 ⁴ / ₅
00	00	15 432.0	15 432
23 г8	28r12	30	30↓
24 560	15 432	132	132
48	300 15x20	120	120
80	132	120	12
72	120 15x8	120	12
8	12	0	
		(12 ÷ 15 = 0.8)	$(0.8 = \frac{4}{5})$
		remainder as a decimal	remainder as a fraction

With long division, there is the opportunity to teach an expanded method first (ie chunking)

The Calculation Sequence - applying the skills

The Sequence	Prompts	Planning
Provide an estimate for the calculation	Using knowledge of number and the number system, rounding	

	and approximating, make a reasonable estimate.	
Teach the calculation skill	What is the objective you are teaching? Include example questions, increasing in complexity, for both operations.	
Ensure you have taught the inverse	Plan example questions, increasing in complexity. Ensure methods used are in line with school calculation policy. Check that children understand that inverse can also be used to check calculations	
Devise similar calculations but include units	Which units do you need to include? Check the measures applicable to your year group for length, weight, capacity, money and time.	
Complete missing box questions	Include units in these questions as above. The box may cover single digits or an entire number. Vary the position of the missing	

	box within the calculation.	
Complete word problems.	Write problems,	
1 and 2 step, including	ensuring the	
units	numbers are sized	
	correctly in	
	line with the objective	
	and that	
	units are also used.	
Provide opportunities	Plan example questions	
for open ended	and	
investigations	investigations.	
	Ensure children are	
	working with	
	the correct operations,	
	appropriate size of	
	numbers and	
	use of units for context.	

Addition

	Typical calculations	Suitable methods
У1	U+U TU + U (to 20 including zero)	Practical Number line

У2	TU + U TU + multiples of 10 TU + TU U + U + U	Practical Number line Expanded columnar
У3	HTU + U HTU + TU HTU + HTU	Number line Expanded columnar Column
У4	THTU + HTU THTU + THTU	Expanded columnar Column
У5	THTU.t + THTU.t THTU.th + THTU.th	Expanded columnar Column
У6	THTU.tht + THTU.tht	Column

<u>Subtraction</u>

	Typical calculations	Suitable methods
У1	U-U TU - U (to 20 including zero)	Practical Number line

У2	TU - U TU - multiples of 10 TU - TU U - U - U	Practical Number line Expanded columnar
У3	HTU - U HTU - TU HTU - HTU	Number line Expanded columnar Column
У4	ΤΗΤΌ - ΗΤΌ ΤΗΤΌ - ΤΗΤΌ	Expanded columnar Column
У5	THTU.t - THTU.t THTU.th - THTU.th	Expanded columnar Column
У6	THTU.tht - THTU.tht	Column

Multiplication

	Typical calculations	Suitable methods
У1	U×U	Practical (repeated addition)
		Practical and pictorial arrays

У2	U×U	Practical (repeated addition)
		Practical and pictorial arrays
У3	TU x U	Grouping on a number line progressing into Expanded (grid) and into Short
	TU×U	Expanded (grid)
У4	ΗΤU × U	progressing into Short
	HTUXU	Expanded (grid)
У5	ΤΗΤU × U	progressing into Short
	τυ × τυ	Expanded (grid) progressing into Long
	THTUXU	Short
У6		
	TU x TU	Expanded (grid) progressing into Long
	ΗΤU × Τυ ΤΗΤU × Τυ	Long
	UtxU	Expanded (arid)
	U.th x U	progressing into Short
	 + \sqrt{T }	Expanded (arid)
		progressing into I and
		pi ogi essing into Long

<u>Division</u>

	Typical calculations	Suitable methods
У1	U ÷ U TU ÷ U	Practical sharing Number-line grouping

У2	U ÷ U TU ÷ U	Practical sharing Number-line grouping
У3	TU ÷ U	Grouping on a number line progressing into Short
У4	TU ÷ U	Grouping on a number line progressing into Short
	HTU ÷ U	Short (remainders to be expressed as r)
У5	HTU ÷ U THTU ÷ U	Short (remainders to be expressed as r, then as a fraction and as a decimal)
У6	ТНТU ÷ U НTU ÷ TU	Short (remainders to be expressed as r, then as a fraction and as a decimal)
	THTU ÷ TU	Long (remainders to be expressed as r, then as a fraction and as a
	U.th ÷ U TU.th ÷ U	decimal)
	HTU.th ÷ U THTU.th ÷ U	Short (remainders to be expressed as a decimal)

<u>Appendix</u>

<u>Covid 19</u>

The first two weeks back in September 2021 will have a 'Basic Skills' focus for both key stages. In line with DFE guidance, there will be an emphasis on Maths lessons and cross-curricular maths in other curriculum areas. The focus will be on key basic skills relevant for each year group.

Apparatus such as counters, dice etc. can still be used if appropriate, with staff ensuring that these are sanitised after every use.

As per current guidance, we will not be sending home maths homework until we are advised that it is safe to do so. Children will continue with their daily Maths lessons in school, as well as continuing to access the 'TTRockstars' app to develop essential multiplication skills.

In addition to the above, we will remain aware of the recovery curriculum that is in place for schools and follow this accordingly to meet the required expectations.

Interventions will be put in place for all year groups which will be delivered by qualified teachers to target closing the gaps.